

D3.4.3 – Rich mobile client for

accessing Europeana

This deliverable is software.

co-funded by the European Union

The project is co-funded by the European Union, through the eContentplus programme

http://ec.europa.eu/econtentplus

EuropeanaConnect is coordinated by the Austrian National Library

ECP-2008-DILI-528001

EuropeanaConnect

D3.4.3 – Rich mobile client for accessing Europeana

Deliverable number/name D 3.4.3

Dissemination level Public

Delivery date 2010-07-31

Status 1.0

Author(s) Dennis Heinen, Tobias Hesselmann OFFIS

eContentplus

This project is funded under the eContentplus programme,

a multiannual Community programme to make digital content in Europe more accessible, usable and

exploitable.

EuropeanaConnect is coordinated by the Austrian National Library

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

Summary

This deliverable summarizes the extension of a middleware and web server for mobile access

(documented in D3.4.2 – Middleware and web server for accessing Europeana) and the

implementation of a rich mobile client for accessing Europeana as part of task 3.4 – Experiment

with Mobile Access Channels for Europeana. We start with the presentation of the approach used

to derive the user requirements for this deliverable. We then describe the human-centred design

process, which is used for the development of the rich Europeana mobile client. After the

discussion of concepts for a backend of a location-based service in Europeana, we present the

related implementation and describe its integration into the Europeana portal. We continue with a

design for the related mobile optimized frontend. Based on that, we will then present the actual

implementation of the mobile user interface. After that, implementation details are described. We

also give an outlook for the future by suggesting further improvements to ensure the

developments of task 3.4 can keep up with the technological developments in the next years.

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

Table of Contents

1 Introduction.. 5

1.1 Motivation.. 5

2 Process Model .. 5

3 Requirements Definition.. 7

3.1 Summary of Mobile Operating Systems / - Browsers Analysis .. 7

3.2 Results from User Survey ... 7

3.3 Functional Requirements / Use Cases ... 7

3.4 Non-functional requirements... 8

3.5 Constraint requirements.. 9

4 Design and Implementation .. 9

4.1 Backend Design Considerations... 10

Conclusion... 12

4.2 Backend implementation... 12

4.2.1 Implementing a spatial database with PostGIS .. 12

4.2.2 Europeana portal integration... 13

4.2.3 Merging Solr-Results with PostGIS-data... 15

4.3 Frontend design .. 17

4.4 Frontend implementation .. 18

4.4.1 Advanced search... 18

4.4.2 Modified index page to locate a user’s position .. 19

4.4.3 Map result visualization ... 20

4.5 Implementation details .. 22

4.5.1 Code repository and framework integration .. 22

4.5.2 3rd party libraries.. 22

5 Conclusion... 23

5.1 Suggestions... 23

5.2 Next steps ... 24

References ... 24

Description of software developed for Europeana within EuropeanaConnect 25

List of figures .. 26

Acronyms.. 26

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

5 / 26

1 Introduction

The overall goal of EuropeanaConnect Task 3.4 is to make the rich cultural content of Europeana

available to a broad spectrum of users in mobile scenarios. With the development of mobile

access channels for Europeana, we enable users to access the material inside the Europeana

database and benefit from the cultural content inside Europeana using their mobile clients when

the use of stationary PCs is either impossible or unwanted. For reading convenience, we will refer

to the Europeana mobile client application as eMobile in the following.

1.1 Motivation

The mobility of people has drastically increased in the last decades. We are living in a global

world, and it takes us not more than a few hours to travel to any part of Europe. Travelling to

other places to explore cultural resources has thus become very common activity. Hence, it can

be considered very important to not only support users accessing Europeana from their stationary

desktop PCs, but also from their mobile devices. Mobile phones or Tablet PCs have become very

smart devices in the last years, which are increasingly used for accessing web based services. A

study of (Gartner, 2010) even suggests that by 2013, more people will access the internet from

their mobile devices than from traditional desktop PCs worldwide.

With Deliverable 3.4.2 (OFFIS Institute for IT, 2010), we have already presented a basic version

of a mobile client for Europeana, which is able to search content in the Europeana database,

browse results and view details on specific items. This deliverable will complementary describe

the functionality of a more advance “rich client”, which in addition features location aware

searching, as well as more advanced (faceted) search functions. It thus describes the differences

between the two clients and should therefore be considered an extension to D3.4.2.

The remainder of this document is structured as follows: In chapter 2, we will briefly describe our

approach for the developments of Task 3.4 and explain the used process model. In chapter 3, we

will sum up the results from our requirements analysis in subtask 3.4.1 and outline the identified

use cases for this deliverable. Chapter 4 contains the actual design and implementation

documentation. We conclude with a summary and present the next steps in the development of

the mobile client in chapter 5.

2 Process Model

In this chapter we describe the approach used to define the requirements for the development of

eMobile, the mobile access client for Europeana.

Human-Centred Design process

The design of an interactive system, in this case a mobile web application, is no trivial task. To

ensure the development of a highly usable system that is efficient, effective and satisfying, which

are the three main criteria for usability as defined in ISO 9241-11 (ISO, 1998), the application

design needs to follow a defined process model. The document at hand is the result of the

application of the HCD process, as specified in ISO 13407 (ISO, 1999). It is particularly well

suited for the design of interactive systems, as it incorporates user feedback in all stages of

development, which can be considered one of the most crucial aspects in software engineering.

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

6 / 26

Figure 1. Human-Centred Design Process

The HCD process is illustrated in Figure 1. It consists of four steps:

1. Specify Context of Use. In this step, the stakeholders of the product are identified and the

user environment is described. This step gives developers a “big picture” of the product

and its users.

2. Specify requirements. The specification of requirements is the most essential step to

create highly usable products. In this step, the goals of the product’s users will be

gathered and described in a standardized format.

3. Produce design solutions. Based on the first steps, the development of the actual software

version is carried out.

4. Evaluate design. A crucial step to measure the usability of a product and to improve the

product usability-wise is to perform evaluations on the product, which are conducted in

this step.

The process is then repeated until the developed system satisfies the formerly specified

requirements. In Deliverable 3.4.1, we have specified the Context of Use and the Requirements

for a mobile client for Europeana (OFFIS Institute for Information Technology, 2009). The actual

design and implementation documentation of the mobile client, which builds on the requirements

defined before, is split into two documents: In Deliverable 3.4.2, we have described the basic

functionality of the mobile client, including the Middleware and Web Server functionality, which

provides basic search functions to mobile users. In this document, Deliverable 3.4.3., we report

on functions for rich mobile devices and smartphones, including location-aware searching of

Europeana content. Deliverable 3.4.4 will conclude with an evaluation of the requirements

themselves and the developed mobile clients, according to the last section of the HCD process.

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

7 / 26

3 Requirements Definition

This chapter sums up the results from our requirements analysis in subtask 3.4.1 and outlines the

identified Use Cases for task 3.4.3

3.1 Summary of Mobile Operating Systems / - Browsers Analysis

Since smartphones are becoming more and more important when it comes to mobile internet

access (Zmags, 2010), we will focus on the development on a mobile access channel for

Europeana that meets the needs of mobile users with that device class. By adhering to

established web standards (HTML/CSS, W3C Geolocation API) it is possible to create a user

experience that is independent of the used operating system and mobile browser. To accomplish

this goal, the different hardware capabilities of devices need to be considered, e.g. by offering

location aware features by using the built-in GPS sensor of modern mobile devices.

3.2 Results from User Survey

The user survey – conducted as part of the requirements analysis with senior staff members from

our project partner, the Royal Library of Denmark, with experience in mobile access or human

factors – gives an interesting picture about the image of Europeana and the features users

demand of a mobile client for Europeana. The participants gave some comments concerning the

improvement of some aspects of the current Europeana web portal, particularly when it comes to

quality of the search results, purpose of the web site and speed. Thus, for a mobile client, an

easy operation was explicitly demanded by some of the participants. The added value of a mobile

client was not obvious to the users at first sight, although they were able to identify numerous

scenarios for a mobile Europeana client, including research, educational and fun use of

Europeana in mobile context. It seems their opinions may be biased by the current look and feel

of the Europeana web portal, which is not optimized for mobile devices at the current time. The

most important features identified were the performance of the mobile application and the support

of the different capabilities of mobile devices, e. g. different resolutions of the used displays. Also,

location aware search features were interesting for the users and were seen as feasible features

for a mobile client. Concerning the installation of a third-party application on their devices, the

users were ambivalent. One participant would install such an application, while the others were

sceptical or didn’t see a need for an additional application.

Interestingly, in the requirement phase no participant mentioned interactions with the camera

which is nowadays built-in in nearly all mobile devices. According to our experiments with mobile

camera interaction techniques we came to the conclusion that this is currently not appropriate,

mainly due to insufficient image quality of camera pictures and the need for a higher thumbnail

resolution of Europeana objects. Therefore we have not identified camera interactions as a valid

use case.

3.3 Functional Requirements / Use Cases

In Deliverable 3.4.1, we have formalized the functional requirements on eMobile in use cases,

which are summarized in the following. We are thus only listing the use cases regarding the rich

mobile client at this point (see (OFFIS Institute for Information Technology, 2009) for a more

complete version).

UC 1.2 Advanced (Faceted) search

The system shall allow the user to do an advanced search over different categories

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

8 / 26

UC 1.3 Location aware search

The system shall allow the user to do a location aware search based on the user’s current

position

UC 2.4 Visualization of Search Results in a map

The system shall allow the user to visualize results in a map, showing entries in a specified

perimeter around his / her current location.

3.4 Non-functional requirements

In contrast to functional requirements, non-functional requirements do not make a statement

about the behaviour of the system, but about its quality. They are an essential part of the

requirements definition, especially in the context of larger projects as Europeana, in which

thousands of users are potentially working with the system each day.

The following requirements are applicable to Subtask 3.4.2. A full list and a description of each

requirement can be found in D3.4.1 as part of the user requirements definition.

Usability

The usability of the mobile client is a critical aspect that demands special attention. According to

DIN EN ISO 9241-11, usability is defined as the “extent to which a product can be used by

specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a

specified context of use.”

According to the user centred design process, we will evaluate the usability of the system in a

user study as part of Task 3.4.4, after the release of RHINE in M15 and give recommendations

about future improvements of the system.

Security

One of the most important non-functional requirements is security. Therefore, the system shall

not store any personal information about a certain user that cannot be changed by the user

him/herself. It shall not allow unauthorized individuals or programs access to any communication.

Scalability

Scalability is a critical issue for all developments in the EuropeanaConnect project. Europeana

will become a central service for all Europeans and is therefore likely to experience heavy traffic

from day to day. This also holds true for the mobile web client developed in this task, it thus

needs to be made sure that eMobile will be scalable according to the increasing popularity of

Europeana.

Extensibility

Extensibility is a quality of design that takes possible future advances into consideration and

attempts to accommodate them. The system shall therefore be able to allow the addition of

features without influencing existing system functions. The usage of SPRING as a framework, as

recommended by the Europeana Office, assists in keeping the system flexible and extendable.

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

9 / 26

Maintainability

The code developed in this task needs to be maintained by external institutions, i. e. the

Europeana Office, after the project. To ensure this, we support the development architecture

proposed by the Europeana Office, concerning development platforms and tools, as well as

programming language and frameworks as good as possible.

Testability

To ensure a proper testability of the code, we have developed unit tests for all critical parts of the

software. Unit tests can be executed automatically to confirm the correct operation of the code

after changing parts of the system. We have furthermore tested the operation of the system

manually to ensure proper operation from a user centric point of view.

Platform Compatibility

By adhering to the conventions established by the Europeana Office, we ensure compatibility with

the already established platform and reduce the effort for integration.

Performance

To ensure a satisfying user experience, the system needs to respond within a certain period of

time. By carefully choosing a backend concept, the system is able to deal with large amount of

data. The implementation of a modular and scalable system allows us to provide a service that

can handle an increasing number of concurrent users.

3.5 Constraint requirements

There are also constraints in the form of technical demands that are made by the Europeana

office. These are described in detail in the Guidelines for the use of EuropeanaLabs (Siebinga, et

al., 2009). We address and refer to them (e.g. external libraries) during the course of this

document.

In the following, we will describe the actual design and implementation of the rich eMobile client,

which adheres to the requirements presented in this chapter.

4 Design and Implementation

In order to fulfil the requirements described in chapter 3, we have developed an Adaptive Web

Client (see Figure 2) which allows eMobile users to perform

• advanced searches, e.g. only search for a specific title or creation date

• location aware searches in Europeana, i. e. to search for cultural works around the user’s

current position

Figure 2 shows an illustration of the eMobile system architecture. At first the system detects

whether the actual request to the Europeana web site is made from a stationary desktop PC or

from a mobile device. If a desktop PC is used, the user is redirected to the standard Europeana

Portal. If a mobile device is used instead, the system carries out a device identification, detecting

the capabilities of the mobile devices and the Mobile Web Browser used. In order to overcome

the heterogeneity and limitations of mobile devices, we have implemented an Adaptive Web

Client, which acts as a middleware between the Mobile Device and the Europeana Database. It

encapsulates queries made by the mobile device, forwards them to the Europeana database and

collects the query results, which are then processed and adapted to the respective mobile device.

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

10 / 26

We have split the Adaptive Web Client into two parts: Basic and advanced services. The basic

search functionality covers the formulation of queries, the browsing of search results and the

displaying of detailed information for items inside the database, which are described in detail in

Deliverable 3.4.2.

Figure 2. eMobile System architecture

In the following, we will explain the necessary concepts for the advanced (“rich”) services of the

system, the location aware search functionality and the enhanced search feature.

The results of this Task should be considered experimental in accordance with the Description of

Work. The development work of Task 3.4 ended in M15. Thus, the integration of the proposed

features into a production ready environment needs to be performed by third parties, such as the

Europeana Office, in a later stage of the project.

4.1 Backend Design Considerations

The Europeana framework currently uses Solr (http://lucene.apache.org/solr/), an open-source

search server built on top of the search and indexing library Apache Lucene

(http://lucene.apache.org/) to store the indexed documents. As there is no geographic information

available for the various items in the database at the time of writing, we propose the following way

to store and retrieve geographic data.

Solr exposes its functionality as web-based service and is queried via a HTTP Request in

Europeana. A query can be specified easily by a parameter of an URL, e.g.

“http://solrserver/select?q=Manuscript”. In this particular example, the formulated

query would initiate a full text search for the term “Manuscript”.

Our first approach to store geographic information with the search index was to use a Solr plug-in

that adds geospatial algorithms to the search engine. By the time of implementation of this

Deliverable, the Europeana portal used Solr 1.4. There were plans to integrate spatial search into

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

11 / 26

Solr 1.5 (http://issues.apache.org/jira/browse/SOLR-773), but there is neither an estimated

release date nor a clear commitment on the integration of this feature.

However, there are three projects that try to fill this gap and enable spatial search in Solr:

solr-spatial-light

Project website: http://github.com/outoftime/solr-spatial-light

Geo-searches in solr-spatial-light are done by adding a spatial parameter to a regular query:

q=Manuscript&spatial={!radius=10.0 sort=true}lat:40.0,lng:-70.0

This will instruct the plug-in to only return results whose "lat" (latitude) and "lng" (longitude) fields

contain coordinates within 10 miles of the specified location with a latitude of 40.0 and a longitude

of -70.0. Furthermore, it is specified to sort the results in ascending order of distance from that

particular location.

Even though development on this project is quite active, the maintainers clearly state that “Much

work is being done to build robust spatial search into Solr 1.5. This plug-in is not intended as a

replacement for or alternative to that work; rather, its purpose is to provide a rough and ready

solution to perform spatial search with Solr 1.4 until the real deal is released.”

The authors also mention the plug-in presented next as “considerably more robust in its

implementation”

Spatial solr plug-in

Project website and further information:

http://www.jteam.nl/news/spatialsolr

A new and improved Spatial Solr

Geo-Location Search with Solr and Lucene

Geo-searches with the spatial solr plug-in are done by modification of a standard query:

q={!spatial lat=40.00 lng=-70.00 radius=10 calc=arc unit=km}Manuscript

In contrast to the plug-in mentioned above, this implementation allows specifying a unit used to

perform calculations (km/metric instead of miles). In addition, this plug-in enables searching not

only in a specific perimeter around a location, but also inside a bounding box. It also features

threading parameters to allow scaling and distributed computing for larger datasets. However, it

doesn’t appear to support sorting by distance (as stated in solr-spatial-light documentation).

LocalSolr

Project website and further information:

Project website

Compiling LocalSolr

Using Local Solr

LocalSolr is used by specifying a newly defined new query type in a spatial query:

qt=geo&lat=40.00&long=70.00&radius=10&q=Manuscript

This plug-in supports sorting by distance, score or any other indexed field that solr itself can sort

on. However, it uses miles to calculate distances and is not capable of performing bounding box-

queries.

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

12 / 26

Conclusion

All of the plug-ins mentioned above require geo-coordinates to be stored within the document

index. Actually, this means that every item in the Europeana database needs to contain

information about its location. As a consequence, a huge amount of redundant information would

be stored in the database. It seems much more reasonable to avoid this redundancy and store

the geographic information on an institution or collection level. We propose to store this

information in a GIS-enabled relational database that can serve as a Geoserver backend, which

may be required by other EuropeanaConnect developers as well (e.g. task 3.3 as stated on the

first Developer’s meeting (November, 2009, Vienna)).

Since the Europeana portal already uses a PostgreSQL object-relational database for some parts

of its system, e.g. user registration, we have developed a method to enable this relational

database to perform spatial queries.

PostGIS

PostGIS is an open source software that adds support for geographic objects to the PostgreSQL

object-relational database, providing spatial types, indexes and functions. PostGIS follows the

“Simple Features Specification for SQL” from the Open Geospatial Consortium. The specific

implementation details are presented in the following.

4.2 Backend implementation

4.2.1 Implementing a spatial database with PostGIS

Geographic data types

The PostGIS extension adds a few specific geographic data types to the PostgreSQL database

management system. In order to provide a location-aware service, the actual location of an

institution needs to be stored in the database, which can be achieved in two ways using different

data types, the geometry and geography type, the latter being introduced in the latest version

(1.5). The developer’s documentation provides a specific chapter on when to use which data type

(http://postgis.refractions.net/documentation/manual-

1.5/ch04.html#PostGIS_GeographyVSGeometry). Since we are actual dealing with a continental

area and are expected to store locations in latitude and longitude, the following statement from

the manual can be applied: “If your data is global or covers a continental region, you may find that

GEOGRAPHY allows you to build a system without having to worry about projection details. You

store your data in longitude/latitude, and use the functions that have been defined on

GEOGRAPHY”.

Table structure

Figure 3 describes the structure of the table containing the geographic information of the several

institutions which physically house the items in the database. It contains the following attributes:

Id: This attribute serves as primary key and is simply a numeric field that is incremented for each

new dataset.

Title: The title gives a short description on the institution that can be found on a specific location

and is also shown as a tooltip in a map marker.

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

13 / 26

Location: The location attribute contains the location that is stored using the geography data type

described above. This attribute is actually used only for queries and calculations by the PostGIS

system. The coordinates are also stored separately (in the “lat” and “lng” attributes described

below), which is necessary since the Hibernate data access layer used by the Europeana portal

has no support for this particular data type (see

http://www.hibernatespatial.org/jira/browse/HIBSPA-54 for progress on the implementation of this

feature).

Lat: This attribute contains the latitude of a location.

Lng: This attribute contains the longitude of a

location.

Thumbnail: This attribute may be used to store a

reference to a thumbnail depicting the institution that

is shown when a user chooses to see more

information on a specific place on the map.

Description: The description field allows adding a

slightly longer informative text (e.g. exact address,

telephone and contact information or opening hours)

on an item that may be formatted or structured via

HTML tags. It is shown together with the thumbnail

when a user chooses to see more information on a

specific place on the map.

Morelink: This attribute allows specifying a link which

is opened whenever a user clicks on the “more…”

link in the item description tooltip of the map. This

link may point to a result page that shows items from

an institution or items that are related to or contain

information on a special monument (e.g. Berlin

Wall).

The index global_points_gix on the location column is essential to allow spatial queries on larger

datasets without serious performance problems

(http://postgis.refractions.net/documentation/manual-1.5/ch04.html#id2794434).

By choosing this approach we are able to realize a service that allows not only a presentation of

Europeana objects, but also allows implementing more features related to cultural tourism, e.g.

exhibitions, in the future.

4.2.2 Europeana portal integration

Figure 4 shows a simplified diagram of the classes we implemented for the backend to realize our

location-based service. All classes follow the naming and implementation conventions

established by the already existing Europeana framework.

Figure 3. Database table for geographic

data

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

14 / 26

Figure 4. Simplified class diagram

One of the central points in the framework is the BeanQueryModelFactory that is used to

populate all sorts of search related Views. For our service, we declared a new interface,

MapQueryView that was added there and is implemented in the MapQueryViewImpl class. It is

used to select the locations relevant for a query and a pagination object related to that result,

which then is injected to the View presented to the user.

The GeoSpot class is our addition to the Object/Relational Hibernate Mapping, needed to work

with the content of our newly defined database table (see chapter 4.2.1).

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

15 / 26

The class GeoSpotDaoImpl, an implementation of the GeoSpotDao interface makes intensive

use of the GeoSpot class to query the database, receive the results and populate a set of

locations relevant for the user’s position and Europeana objects matching his query.

The MapQueryPaginationImpl object is actually a simple implementation of the already

existing ResultPagination interface adapted to the needs of our service: Based on the total

number of results, the number of “rows” or size of a chunk that is displayed per page and the

starting offset index, the total number of pages, next page offset etc. are calculated.

The diagram below shows the directory structure and the files mentioned above. It is located in

the \branches\mobile_location_aware-directory. For a full list of files modified for the

backend, see Changeset 2346

(http://europeanalabs.eu/changeset/2346/europeana/branches/mobile_location_aware)#

└───core\src\main\java\
 └───de.offis.europeana.location
 ├───database
 │ │ GeoSpotDao.java
 │ │
 │ ├───dao
 │ │ GeoSpotDaoImpl.java
 │ │
 │ └───domain
 │ GeoSpot.java
 │
 └───querymodel
 └───query
 MapQueryPaginationImpl.java

 MapQueryView.java

4.2.3 Merging Solr-Results with PostGIS-data

Since the user is allowed to perform location-aware searches with and without a keyword, the

backend has to decide whether the usage of the solr index is required or not. Figure 5 shows a

simplified flowchart of that process.

At first, the backend determines if the user has entered a keyword along with his request to

perform a search around his position (A). If that is the case, the request is handed over to the solr

service that then performs a search to find all institutions offering an object relevant for this

keyword (B). If there was no keyword entered or no relevant objects in the solr index, a spatial

query on the geo data is executed (C). However, if there are any institutions identified by the solr

search, this information is used as an additional parameter in an advanced spatial query (D),

Finally, the result from both data sources is combined and prepared for presentation (for example

with a pagination) in order to be presented to the user.

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

16 / 26

Figure 5. Simplified flowchart of the search process

In our implementation, this is implemented in the getGeoSpots(…) method of the

GeoSpotDaoImpl class, where in step (D) we are using the provider name from the solr index

and use it in a select statement to match the title attribute of our geospot table. Since this

approach is likely to be error-prone, our suggestion would be to introduce a unique identifier for

every institution that is used in the solr index as well as a primary key in the database.

Performance impact: Our tests with geo locations of about 3,500 institutions have shown no

significant impact on search performance on our test server. However, in a production

environment multiple geo servers may be needed to handle spatial queries and other mapping

services, but the chosen technologies and frameworks provide mechanisms to scale with

increasing popularity.

A

B C

D

E

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

17 / 26

4.3 Frontend design

Figure 6. Structure of the mobile interface

Figure 6 shows the structure of the mobile interface we have developed as documented in D3.4.2

(green and blue blocks) and this document (red blocks) as well as the paths a user can take to

navigate between the pages of the portal.

The index page serves as a starting point and is the first contact with Europeana when the user

opens the portal on a mobile device. From there, he can use one of the iconic objects from the list

of treasures (e.g. Mona Lisa) to go directly to the object presentation or start a search. The

perspective of the result page for his query can be switched from a mixed image/text view to a

text- or image-only presentation of which he can pick an item to be presented in a “full” object

presentation.

Please note that after we handed our code over to the Europeana Office, some minor changes

have been applied to the mobile client and therefore the actual mobile layout presented on the

Europeana portal slightly differs from the screenshots and diagrams in this document. For

example, the list of treasures has been de-scoped. However, a test-server – with a limited demo

dataset – that may be used for comparison is available as described in the appendix.

In order to realize the requirements identified earlier, we needed to modify the index page to

enable a user to perform an advanced search (A) as well as a possibility to initiate location aware

searches (B). We also had to develop a map perspective (C) for search results that can either be

used to visualize the providers of objects from a “classic” search result or results from a spatial

search for objects around the user’s position.

A B

C

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

18 / 26

4.4 Frontend implementation

4.4.1 Advanced search

While most users only need basic search functionality, more experienced Europeana users

demand advanced search capabilities. However, by minimizing the amount of interactions

needed to formulate a query, this feature may also be interesting for users without a technical

background.

Figure 7. The advanced search as shown in the Europeana portal

The design of the advanced search

interface available for desktop browsers

already offers a simple and easy to use

interface to create advanced queries.

(Figure 7) Unfortunately, this

implementation was not designed with

mobile devices and small screens in mind.

The current implementation is not using the

available screen size efficiently, as the

ordinary web site is naturally optimized for

access by standard Desktop browsers. But

since the underlying logic does not depend

on the interface, we were able to

completely reuse the server-sided code for

advanced search functions. Thus, the

realization afforded a mobile adapted

frontend only.

The result of our implementation is shown

in Figure 8. The magnifying glass (A) is

used to enable the advanced search

interface, which is hidden by default. It

hides/shows an additional area beneath the

regular search box. By using the combo

boxes (B), the user can pick up to three

fields (Title, Creator, etc.) that he wants

to use as a filter criterion, together with a

list of Boolean operators (and, or, not (C)) to specify a complex query without the need for

cumbersome typing on a onscreen keyboard or keypad.

A

B

C

Figure 8. Advanced Search on a mobile device

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

19 / 26

4.4.2 Modified index page to locate a user’s position

The W3C Geolocation API is an effort by the W3C to standardize an interface to retrieve the

geographical location information for a device. Even though the Geolocation API specification has

not been finalized yet (http://dev.w3.org/geo/api/spec-source.html), a number of mobile browser

developers have integrated an API to query the user’s location. This has caused a variety of

vendor specific implementations that do not comply with the standard published so far.

The open-source geo-location-javascript project was initiated to overcome this flaw by wrapping

the underlying platform specific implementation through a simple JavaScript-API that is aligned to

the W3C Geolocation API specification. The project currently supports the following platforms:

• iPhone OS > 3.0

• Google Gears (Android, Windows

Mobile)

• BlackBerry Device Software 4.1 and

greater

• Nokia Web Runtime Toolkit

• Bondi Widgets v1.0

• webOS Application Platform

• Torch Mobile Iris Browser

• Mozilla Geode

The framework mainly provides two distinct

methods:

• geo_position_js.init() is used to

determine whether the device has client-

side geolocation capabilities.

• geo_position_js.getCurrentPosition()

can then be used to retrieve the location in

form of latitude and longitude coordinates.

After the user permitted the usage of her

position, location information is acquired –

depending on the platform’s implementation – by GPS, IP address, Wi-Fi and Bluetooth MAC

address, Wi-Fi connection location, or device GPS and GSM/CDMA cell IDs. The location is

returned with a given accuracy depending on the best location information source available.

Since the GPS signal sometimes is not available (e.g. indoors), most devices have a fallback-

mechanism implemented that automatically switches to the next available positioning resource.

Thus, it is currently not needed to implement an own IP-based lookup (using commercial services

like http://www.ipgp.net/ for instance).

The index page was modified to include the geo-location-javascript library (located in \portal-

lite\src\main\webapp\mobile\js\geo-location.js) and an option to search interesting

places around the user’s location.

Figure 9. The "Around me" button

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

20 / 26

While the page is loading, the user is asked if the server may use his location to activate the

location-based service. If permitted, a new button is displayed next to the regular search button

(see Figure 9). The user now has two options to use the location aware service:

• Enter one or more keyword(s) to search for specific items or

• Initiate a search to show interesting places around his current location.

In order to provide a localized “Around me” button, the according translation was added for each

language file in \portal-lite\src\main\message_keys.

4.4.3 Map result visualization

The user’s location (B) and the results are visualized by markers (C). Since having a marker for

every Europeana object would fill the complete map, each marker represents an institution or

interesting place as defined in the geospot database table.

The map perspective (Figure 10) is a pure JavaScript-driven implementation using the Google

maps API. It allows the user to drag and zoom the viewport to the desired map section. While he

interacts with the map, the view is constantly updated. The data transfer is actually performed

asynchronously via AJAX in the background. To realize this, we have implemented a simple

template for the Freemarker engine used in the Europeana framework (a JAVA-based template

engine focusing on the MVC software architecture: http://freemarker.sourceforge.net/) that

transfers the desired data in a XML format, which can easily be interpreted by the client. The

result is an interactive and dynamic map interface that is populated without disturbing page

reloads.

A

B

Figure 10. Map perspective. Left: initial view. Right: view for larger region

C

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

21 / 26

The backend is designed to return search results in chunks of 25 items. If there are more items

matching a query, the “More” link is shown (A) which allows the user to add more results to the

map.

By tapping a marker, an info window is shown and scrolled into view (see Figure 11). This

window will display the content for the location according to the information available in the

database. The thumbnail in the upper left region is used to show an exterior view or a special

item from the catalogue. Below, the content from the description attribute is presented, which may

be used to provide address or contact information as well as opening hours or special events.

The actual search result can be browsed using the related link (A) or – depending on the

configuration of the morelink attribute – with the “More…” link (B). This will then switch the

perspective to the regular mixed result perspective.

By tapping one of the directions-icons the infowindow closes and a direction layer is added to the

map (see Figure 12).

For time consuming actions (loading additional results, directions rendering), a small animation in

the title bar (Figure 12, (A)) is shown to give a visual feedback to the user that the system is

working.

We also modified the upper region of the result page to allow switching from and to the map

perspective (B).

Figure 11. Info window Figure 12. Directions

A

B

A

B

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

22 / 26

The templates required to create the map interface are shown below:

└───portal-lite\src\main\webapp\WEB-INF\templates\mobile\
 └───iphone
 inc_result_dynmap_brief.ftl

 map-doc-window-xml.ftl

 map-doc-window.ftl

While map-doc-window.ftl provides the skeleton for the map page,

inc_result_dynmap_brief.ftl hosts the Google maps container and interacts with map-

doc-window-xml.ftl to request data that is then shown in the map. For a full list of template

modification, see Changeset 2348,

(http://europeanalabs.eu/changeset/2348/europeana/branches/mobile_location_aware).

4.5 Implementation details

4.5.1 Code repository and framework integration

The entire code and all files mentioned throughout this document have been committed to the

central Europeana code repository. It is accessible either via subversion (see the Europeana

Development Guide for details, (only internally accessible for project partners)

http://europeanalabs.eu/wiki/DevelopmentGuide) or browseable online: (only internally accessible

for project partners)

http://europeanalabs.eu/browser/europeana/branches/mobile_location_aware.

The integration of the mobile client into the Europeana Framework, Subtask 3.4.5, has been

taken into account from the beginning of development.

With ticket #1251 (only internally accessible for project partners)

(http://europeanalabs.eu/ticket/1251) we handed the rich mobile client over to the Europeana

development team.

The developed code was committed to the “mobile_location_aware” directory in the “branches”-

section of the central Europeana code repository.

In order to populate the geospot database table with locations, we have provided a set of test

data, located in the repository under branches/mobile_location_aware/tools/geospots.sql

Our results from experiments with the solr plug-ins as described in chapter 4.1 are documented in

ticket #998 (only internally accessible for project partners) (http://europeanalabs.eu/ticket/998)

4.5.2 3rd party libraries

The rich eMobile client makes use of the following 3rd party libraries and frameworks:

• PostGIS: spatial support for PostgreSQL: http://postgis.org/

• geo-location-javascript: Geo location framework: http://code.google.com/p/geo-location-

javascript/

• Google Maps Javascript API V3:

http://code.google.com/intl/en/apis/maps/documentation/javascript/reference.html

• Google Chart API: Custom markers usable with Google maps:

http://code.google.com/intl/de/apis/chart/

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

23 / 26

5 Conclusion

In this document, we have presented the design and implementation of a rich mobile client for

accessing Europeana.

We started with a presentation of the underlying design process and a summary of the results

from our user requirements analysis. We then presented concepts, a solution for a location-aware

service backend and its integration into the Europeana Framework. Afterwards, we created a

concept and implementation of the related frontend for modern mobile devices.

The rich mobile client we created offers an appealing interface adapted to the needs of users in a

mobile environment that provides an easy to use way to create advanced queries and an intuitive

interface for a location-based service.

The code we developed has been provided as a separate branch of the Europeana portal, since

it builds on top of technologies that have not been decided for yet. Due to the fact that our

development involvement ended in month 15 of the project, our deliverable is supposed to be

considered as proof-of-concept for consideration in the development of the Danube release,

scheduled for 2011.

5.1 Suggestions

Unique identifier for institutions: As described in chapter 4.2.3, there is currently no unique

identifier for an institution that would allow us to match a provider with a record from our database

table geospot. In order to provide a fail-safe service, we suggest introducing a unique identifier for

every institution that is used in the solr index as well as a primary key in the database.

Hibernate spatial: Since the Hibernate data access layer currently provides no support for spatial

data types, we suggest monitoring the development of this feature

(http://www.hibernatespatial.org/jira/browse/HIBSPA-54) and incorporate it to make full use of all

spatial database features when available.

Administration of geospot table: In order to maintain the list of providers, monuments and

interesting places, an administrative user-interface may be needed and should probably be

implemented as part of the Europeana Dashboard environment. It should also be required to

populate contact information from content providers and institutions as part of an extension to the

Europeana Data Model.

Geo location framework update: It is recommended to regularly update the geo location

framework to support future devices as well as bug fixes for existing devices that update their

positioning API, e.g. after browser modifications. Updates (currently available at

http://code.google.com/p/geo-location-javascript/downloads) are provided with major mobile

platform releases by the maintainers of the project.

Colorization of Markers: In the future, different types of locations may be integrated into

Europeana: Positions of Europeana content provider institutions, directly geo-referenced objects

e.g. archaeological sites and building from CARARE and Objects geo-referenced via place-

names (GeoParser/Gazeteer). It was thus proposed by Europeana Office (EO) to have different

colours for these markers.

Open Maps. Europeana would like to promote open maps, and it was thus proposed by EO to

have OpenStreetMaps (OSM) as a default geolocation service, with Google maps as a fallback

service. Our rich client is considered a proof of concept, and thus uses Google as a primary

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

24 / 26

mapping service because of its mature API. Regarding OSM, we propose the investigation of

OpenLayers or other frameworks that may have different mapping back-ends.

5.2 Next steps

After designing and implementing the mobile Europeana Clients, the next step is the evaluation of

the mobile clients according to the defined requirements in Task 3.4.4. The goal of the evaluation

is to investigate if the applications developed in this task satisfy the requirements which have

been identified in task 3.4.1. Additionally, the requirements themselves will be subject to

evaluation with the goal of revealing potential future improvements and extensions.

When the Europeana Rhine release goes live, the Europeana Office will gain interesting statistics

on the usage of the mobile interface. This information will be a useful resource that could -

together with user feedback and the results of our evaluation - form the requirements for future

developments of the mobile client and establish the mobile client as an important access channel

for Europeana.

References

Europeana Office, 2009. Solr & Lucene Stability and Scalability. 2009. Version 6. [Online] 2009

[Cited: 28 07 2010]. (only internally accessible for project partners)

http://europeanalabs.eu/wiki/DevelopmentTechnologySolr?version=6

ISO. 1998. Ergonomic requirements for office work with visual display terminals - Part 11:

Guidance on usability . s.l. : DIN / ISO, 1998.

ISO. 2006. Ergonomics of human-system interaction - Part 110: Dialogue principles . s.l. : ISO,

2006.

ISO. 1999. Human-centred design processes for interactive systems. s.l. : ISO, 1999.

Gartner, 2010. Gartner's Top Predictions for IT Organizations and Users, 2010 and Beyond: A

New Balance. Gartner Inc., 2010

Haskiya, David. 2010. Minutes from Skype call between EDLF and OFFIS on Mobile access to

Europeana. [Online] [Cited: 30 07 2010] (only internally accessible for project partners)

https://version1.europeana.eu/c/document_library/get_file?p_l_id=16989&folderId=24260&name=

DLFE-6041.doc

OFFIS Institute for Information Technology. 2009. D3.4.1 Catalogue of User requirements.

http://www.europeanaconnect.eu/documents/D3.4.1_eConnect_Catalogue_of_User_Requiremen

ts_v1.0_20091222..pdf

Siebinga, Sjoerd, Purday, Jon and van der Werf, Bram. 2009. Guidelines for the use of

EuropeanaLabs. 2009. Version 1.

Siebinga, Sjoerd. 2009. Portal Modules. 2009. Version 5. [Online] 2009. [Cited: 28 07 2010].

(only internally accessible for project partners)

http://europeanalabs.eu/wiki/DevelopmentPortalModules?version=5.

Zmags, 2010. Strategic guide for bringing content to mobile devices. Zmags Inc., June 2010

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

25 / 26

Description of software developed for Europeana within

EuropeanaConnect

This software demonstrates the features of the Europeana rich mobile client. Using this software,

users are able to access the contents of Europeana from their mobile devices using advanced

search features. In addition to the web based client (D3.4.2) it moreover contains the following

features:

• Location aware searching. The software utilizes the W3C Geolocation API to enable

location based search functions in appropriate mobile browsers. Using these features,

users are able to

o search for institutions hosting items indexed in Europeana around their current

location

o perform a full text search and visualize the results in a map in relation to their

current location and

o use the mobile device to navigate to the appropriate destinations on foot or by car

• Advanced search functions. Using the advanced search functions built into the

software, users are able to perform a search over categories inside Europeana and are

thus able to narrow down the search according to various criteria, e.g. the title or author of

a given item.

The features implemented in this software are, as denoted in the Description of Work, considered

experimental and may be integrated by a third party at a later stage.

Link to software http://134.106.50.15/portal/

Login information None

Development environment IntelliJ IDEA

Programming language used Java 6.0, JavaScript

Application server used Jetty 6.1.X

Database requirements Postgres 8.X with PostGIS 1.5.X extension

Operating system requirements Windows XP or higher, or Debian Linux

Port requirements / default ports used Default HTTP port (80)

Interface Web service over HTTP

Licensing conditions EUPL, GPL, BSD, MIT

EuropeanaConnect Deliverable D3.4.3 – Rich mobile client for accessing Europeana

26 / 26

List of figures

Figure 1. Human-Centred Design Process .. 6

Figure 2. eMobile System architecture... 10

Figure 3. Database table for geographic data.. 13

Figure 4. Simplified class diagram ... 14

Figure 5. Simplified flowchart of the search process ... 16

Figure 6. Structure of the mobile interface... 17

Figure 7. The advanced search as shown in the Europeana portal .. 18

Figure 8. Advanced Search on a mobile device .. 18

Figure 9. The "Around me" button.. 19

Figure 10. Map perspective. Left: initial view. Right: view for larger region 20

Figure 11. Info window ... 21

Figure 12. Directions .. 21

Acronyms

Acronym Meaning

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CSS Cascading Style Sheets

HCD Human-Centred Design

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ISO International Organization for Standardization

MVC Model-View-Controller

URL Uniform Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

